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Abstract. Reconciling personalization with privacy has been a continuing in-
terest in the user modeling community. In prior work, we proposed a dynamic
privacy-enhancing user modeling framework based on a software product line ar-
chitecture (PLA). Our system dynamically selects personalization methods dur-
ing runtime that respect users’ current privacy preferences as well as the prevail-
ing privacy laws and regulations. One major concern about our approach is its
performance since dynamic architectural reconfiguration during runtime is usu-
ally resource-intensive. In this paper, we describe four implementations of our
system that vary two factors, and an in-depth performance evaluation thereof un-
der realistic workload conditions. Our study shows that a customized version
performs better than the original PLA implementation, that a multi-level caching
mechanism improves both versions, and that the customized version with caching
performs best. The average handling time per user session is less than 0.2 sec-
onds for all versions except the original PLA implementation. Overall, our results
demonstrate that with a reasonable number of networked hosts in a cloud com-
puting environment, an internationally operating website can use our dynamic
PLA-based user modeling approach to personalize their user services, and at the
same time respect the individual privacy desires of their users as well as the pri-
vacy norms that may apply.

1 Introduction

Since personalized websites collect personal data, they are subject to prevailing privacy
laws and regulations if the respective individuals are in principle identifiable (see [1]
for a comprehensive review of privacy issues in personalization). Internationally op-
erating websites are particularly affected since a large number of countries extend the
applicability of their privacy laws to operators and personal data flows beyond their na-
tional boundaries. Moreover, in order to encourage users to interact with personalized
sites and thus benefit from the full potential of personalization, personalized systems
should also cater to each user’s current privacy preferences. That is to say, a user can
have varying privacy preferences on different sites, and at different times on the same
site, and thus each site should be able to treat the same user differently depending on
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her current privacy preferences. In [2] we illustrated that these privacy constraints may
affect not only the data that may be collected by the personalized website, but also the
admissibility of personalization methods for processing personal data.

The resulting combinatorial complexity of these privacy constraints make them hard
to cope with. We therefore proposed a novel approach based on software product line ar-
chitecture that models the variability in both the privacy and personalization domains,
and allows the configuration of the employed personalization methods to be dynam-
ically tailored to each user at runtime, considering both the prevailing privacy norms
and the user’s current privacy preferences. This flexible approach not only helps ad-
dress the complexity of building personalized systems, but also strongly supports their
evolution: as new privacy and personalization concerns arise, they can be added to the
product line architecture in a modular manner [3, 4].

One major concern about our approach is its performance since dynamic architec-
tural reconfiguration during runtime is usually resource-intensive. Will it be practically
possible to deploy such a dynamic system in a contemporary internationally operating
website? In this paper, we describe four variant implementations of our system and an
in-depth performance evaluation under realistic workload conditions. Our work stands
in the tradition of similar attempts in the past to gauge the performance of user model-
ing tools through simulation experiments (e.g., [5—7]). It is however also substantially
different from prior evaluations due to the fact that the workload is not induced by user
requests (such as web page requests) or requests from software processes (such as user-
adaptive applications or personalization methods), and that the aspired goal is not a user
modeling tool that performs personalization tasks efficiently. Rather, the workload is in-
duced by the initiation of new user sessions, and the goal is the efficient instantiation of
user-modeling architectures that meet the privacy constraint of each individual user.

In the remainder of this paper, we will first briefly recap our privacy-enhancing
user modeling framework in Section 2. We then describe the setup of our performance
evaluation, such as the simulated parameters and workload, in Section 3. Thereafter,
we present different implementations of our approach in Section 4, the performance
evaluation of these implementations in Section 5, discussions of the results in Section 6,
and conclusions in Section 7.

2 QOur Privacy-Enhancing User Modeling Framework

In order to enable personalized web-based systems to respect users’ individual privacy
constraints, Kobsa [8] proposed a user modeling framework that encapsulates different
personalization methods in individual components and, at any point during runtime, en-
sures that only those components that comply with current privacy constraints can be
used. We adopted a Product Line Architecture (PLA) approach to implement this de-
sign. A PLA is an architectural representation for a set of related products. It includes
core elements present in all product architectures, and variation points where variations
exist among individual product architectures [9]. Each variation point is guarded by a
Boolean expression that specifies the conditions under which an optional component
should be included in a particular product architecture [10]. A particular product ar-



TN N

Selector U ‘ e D
Manager

UMC Manager

Instantiator U

External
User-Adaptive
Applications

Personalized
shopping site

E,% L UMC,
% N || Privacy bool guard;
Personalized lﬁi
news site

aa g

Privacy bool guard,

Personalized Directory UMC Pool
restaurant Component

recommender —_— _;//\

User Modeling Server

i

Fig. 1. Distributed dynamic privacy-enhancing user modeling framework

chitecture can be selected out of a product line architecture by resolving the Boolean
guards of each variation point at design-time, invocation-time or run-time [11].

2.1 Framework Overview

Figure 1 shows an overview of our framework!. It consists of external user-adaptive
applications, an LDAP-based user modeling server (UMS) [12], a user modeling com-
ponent (UMC) manager, a Scheduler and a cache database. External user-adaptive ap-
plications can retrieve user information from the UMS so as to personalize services to
their end users, and can submit additional user information to the UMS. The UMS in-
cludes a Directory Component and a pool of UMCs. The Directory Component hosts
a repository of user models, storing users’ characteristics and their individual privacy
preferences. The UMC Pool contains a set of UMCs, each encapsulating one or more
personalization methods (e.g., collaborative filtering). UMCs make inferences about
users based on existing information in the user models and then add the derived user
information to the user models [2].

To enable PLA operations (e.g., product architecture selection), the UMC Manager
was added to the UMS. The enhanced UMS was then modeled as a PLA, in which the
Directory Component and the UMC Manger were core components, and UMCs were
optional components. Each UMC is guarded by a Boolean expression that represents
privacy conditions under which the respective UMC may operate. Each privacy con-
dition is expressed by a Boolean variable (e.g., Combining_Profile == true). As such,

! The shaded parts are our privacy-related additions to the user modeling server described in
[12].
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we use these Boolean variables bearing privacy semantics to represent users’ privacy
preferences as well as applicable privacy regulations. In practice, the values of these
Boolean variables can come from the evaluation of privacy conditions expressed in a
privacy policy language (see [13] for a discussion of these languages).

In the following, we will describe the UMC Manager in more detail and then discuss
distribution issues.

2.2 UMC Manager

The UMC Manager was implemented to support PLA selection and instantiation as
well as our caching mechanism. It consists of the following components:

Selector. When a new user session begins, the Selector takes the PLA and the privacy
bindings relating to the new session as inputs. Privacy bindings are name-value
pairs for the Boolean guards in the PLA, e.g., Combining_Profile = false which
would represent that the user or some privacy norm relating to the user session dis-
allow the merging of profiles relating to the same user. The Selector selects a partic-
ular product architecture out of the PLA by resolving the Boolean guards associated
with each optional component in the PLA using the current privacy bindings. It ex-
presses the chosen architecture through a binary Privacy Constraint Satisfaction
(PCS) vector [3] whose n'” element represents whether or not the n“* UMC may
be included in the selected product architecture.

Instantiator. The Instantiator takes a PCS as input and creates a runtime system in-
stance for the product architecture. The total number of different PCS vectors
(2T0talUMCs)y equals the theoretical maximum of instances that may be created.

Cache Manager. We designed a multi-level caching strategy that is shown in Fig. 2.
The Cache Manager controls caches of both individual users’ privacy bindings and
their associate PCS vectors (i.e., the results of the PLA selection). More specifi-
cally, when a new user session starts, the Cache Manager checks the privacy bind-
ing cache whether the system has an existing user session with the same privacy



bindings (i.e., a user with identical privacy norms and individual privacy prefer-
ences). If it finds one, the new session will be assigned to the same system instance
as the existing session. If no such binding can be found, the Cache Manager will
further check the PCS cache since a PCS may meet the constraints of more than
one privacy binding. Only if no such PCS can be found either, the Instantiator will
start a new instance for this user session. More details about our runtime dynamism
mechanism can be found in [3].

2.3 Distributed Framework

In order to cope with potentially millions of concurrent users, the enhanced UMS needs
to be distributed. In Fig. 1, the cloud denotes the distribution of processing over a net-
work of machines. Distribution of the LDAP-based Directory Component and the UMC
Pool have been addressed in [12]. We also distribute the UMC Manager over a network
of hosts, each having a stand-alone copy of the UMC Manager. In addition, we add a
Scheduler in the framework to assign incoming user sessions to various hosts, and a
database to store the privacy binding cache and the PCS cache.

3 System Implementation

In this section, we describe the implementations of major components and operations in
our framework (the first two were varied in the different conditions of our experiment).

3.1 PLA Representation, Selection and Instantiation

As explained above, our privacy-enhancing user modeling framework was designed as
a PLA. Therefore, the core of the framework involves the following tasks: generation
of a PLA for the system architecture, selection of UMCs based on the bindings of the
privacy Boolean guards, and instantiation of the selected architecture for the user mod-
eling system.

ArchStudio-based Implementation. In our preliminary implementation [3], we adapted
functionalities from ArchStudio 3 [14] to perform the above tasks. ArchStudio 3 is an
architecture-centric development environment, built on the C2 architectural style [15].
It provides excellent support for PLA modeling and development. This system has been
meanwhile upgraded to ArchStudio 4 [16], built on the Myx architectural style [17].
The Myx style provides better system performance because it allows unmediated syn-
chronous procedure calls between components in the architecture. In the C2 style, com-
ponent interactions are always asynchronous and mediated by connectors. We therefore
chose ArchStudio 4 for our final test system and implemented it in the Myx style (we
call it the Myx version).

Our Customized Implementation. The standardization and extensibility of the XML-
based PLA representation come at a price: XML processing can be expensive and thus
affect the overall system performance. This is especially the case when the PLA has a
large number of components. Therefore, we designed a light-weight alternative to the



xADL 2.0 representation, called PLA Object Notation (PLAON). It contains an array of
component objects. Each optional component object stores its privacy Boolean guard in
an array, each element representing a privacy Boolean variable. Privacy bindings are in
turn stored as a binary array, each element denoting the binding for a privacy Boolean
variable. Our customized selector can then use the privacy binding array to resolve the
Boolean guard array. Again the results of the selection will be a PCS vector, imple-
mented as a binary array. Our customized instantiator reads from the PCS array to start
components whose values in the PCS array are 1. Since our customized implementa-
tion represents the PLA semantics in a succinct object notation and omits any XML
processing, we expect it to perform better than the original Myx-based implementation.

3.2 Multi-Level Caching

Caching is the other factor that we vary in our experiment. As described earlier, if two
users have the same privacy bindings, or the same PCS vectors after selection, then they
can share the same user modeling system instance. This reuse would save the system
from performing unnecessary architectural selections and instantiations in such cases.

3.3 Resource-Aware Scheduling

Since hosts can have different hardware and networking characteristics in our dis-
tributed framework (e.g. different amounts of memory), the scheduler needs to take this
heterogeneity into account, so as to optimize the overall system performance. When a
host becomes available, it will connect and register itself with the Scheduler. The sched-
uler keeps track of all the registered hosts, their computing capabilities (right now we
only consider the memory size), and the number of user sessions that each host is cur-
rently serving. When a new user session is initiated, the Scheduler first checks with the
Cache Manager to see if any system instance can be reused for this session. If not, it
would select the lightest-loaded host that can still handle this session with its resources.
This resource-aware scheduling was used in all conditions of our experiment.

4 Experimental Design and Procedures

4.1 Controlled variables

Since we suspected that the XML-based Myx implementation described in Sect. 3.1
would perform poorly, we aimed at contrasting it with the two optimization methods
described in Sect. 3.1 and 3.2 through the following 2-factorial design: (Myx vs. Cus-
tomized) x (Non-caching vs. Caching).

4.2 Simulation parameters

Since we anticipated that a very large network of machines will be needed to handle
real-world large-scale applications that was unavailable to us, we identified a reasonable
number of 3000 maximum users per host in pre-trials and simulated such a single host
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on a PC. The other parameters of our experiment were chosen based on our analysis of
international privacy laws and their impacts on personalized systems [18, 19, 2], as well
as the user modeling literature:

Total number of UMCs in the PLA: 10.

Total number of different privacy constraints: 100.

Simulated number of user sessions per host: 3000.

Average arrival rate of unique visitors per host per second: 0.5.
Number of variables in the privacy Boolean guards of each UMC: 5.

We randomly chose 5 out of the total 100 privacy constraints for each UMC and ran-
domly generated the privacy bindings (true or false) for each user session.

Previous work such as [20,21] has empirically shown that the arrival of new user
sessions at a website largely follows a Poisson process”. To compare the four conditions
of our experiment on a common basis, we pre-generated Poisson-distributed session
arrival times with a mean rate of 0.5 users per second, and used them in all experiments.

4.3 Testbed

Figure 3 depicts the overall testbed architecture. The performance evaluation of the
LDAP-based Directory Component and the UMC Pool in [12] had already demon-
strated that they scale well and can be deployed to high-workload commercial applica-
tions. To be able to measure the performance of the PLA selection and instantiation
in isolation, we omitted the Directory Component and created functionless dummy

% Chlebus and Brazier [21] found two separate regions of time in a day, each lasting several
hours and having a different average arrival rate. They therefore suggests that the arrival rate
rather follows a non-stationary Poisson process, i.e. consists of more than one Poisson process,
each with its own rate. Those results are not likely to apply to internationally operating sites
though on which we largely focus.



implementations for all UMCs, thereby realistically assuming that those components
would run on different hosts anyways when deployed in practice. We added a Test
Manager to control experiments, a Request Generator to generate user sessions, and a
MySQL database to store the test setup, logs and results. The whole testbed except for
the database was implemented in Java, complied in Java 1.6, and run in the HotSpot
Java Virtual Machine on a PC platform with two 3.2 GHz processors, 3 GB of RAM,
and a 150 GB hard disk.

4.4 Procedures

The Test Manager first reads the test setup from the database and informs the Request
Generator to generate simulated user sessions and associated privacy bindings. The
Request Generator reads the session arrival times from the database and starts sending
user sessions to the Scheduler. The Scheduler chooses a host to handle the session.
The host then performs the PLA selection and instantiation (in the Cache conditions,
PLA selection and/or instantiation may be skipped, depending on the type of cache hit
— see Sect. 2.2). Once the session has been assigned to a runtime system instance, the
assignment is written into the cache if a cache is used. When all user sessions have been
handled, log files and test results are written into the database.
For every user session, we measure three values:

Handling time, which is the period between the Request Generator sending the session
to the Scheduler, and the session being assigned to a runtime instance.
Reuse rate of runtime instances, which considers the total number of user sessions

and of instances currently in the system, has a range of [0, 1) and is calculated as
Total Sessions — Total Instances
Total Sessions .
Performance improvement (percentage), which compares the system performance

of the original implementation (Myx implementation without caching) with that
of an enhanced implementation. For a given number of users handled, this value

has a range of [0, 1) and is calculated as
Z Total HandlingTimeOriginalVersion — Z Total HandlingTimeEnhancedV ersion
Z TotalHandlingTimeOriginalVersion

5 Evaluation Results

5.1 Handling Time per User Session

Figure 4 plots the handling times for each user session in the four implementations, and
indicates the means and standard deviations. We can see that the customized versions
perform better than the Myx versions, that our multi-level caching mechanism improves
both versions, and that the customized version with caching performs best. The average
handling time per user session is less than 0.2 seconds for all versions except the Myx
implementation without caching.

We also analyzed the spikes of the handling time in Fig. 4 and disconfirmed that
they were correlated with bursts in the arrival rate. Based on an analysis of the logs
created by our experimental testbed we found that the main reason for the delay lies
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Fig. 4. Handling time for each user session (milliseconds)

in Java’s indeterministic thread scheduling. Requests to handle a new session, select an
architecture, and instantiate an architecture each creates a new thread, and occasionally
one of the threads gets switched out of processing and later switched back in. One can
notice that in the Myx version without caching, high handling times increase towards
the end of the experiment. This is because the machine almost ran out of heap space,
and the Java Virtual Machine kept switching threads. A good remedy for these effects of
indeterministic thread switching is to shorten the processing time, which is confirmed
by the substantial decrease of such delays in the conditions in which the customized
version and/or caching have been used.

5.2 Runtime Instance Reuse Rate

Figure 5(a) plots the runtime instance reuse rates for the two caching versions (in the
non-caching versions, no instances are being reused). The reuse rates for the caching
versions increase degressively as the cumulative number of user sessions increases. The
two curves are very similar because both versions use the same caching scheme; the
small variations are due to the true randomness of privacy Boolean guard and privacy
binding generation.

5.3 Performance Improvement

Figure 5(b) plots the performance gain of our three improved versions in comparison
to the baseline Myx version without caching. The curve at the bottom (gain from Myx
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version with caching) goes up as expected: the cache size increases with an increasing
number of users, and hence the hit rate and thus the performance gain increase. The
curve in the middle (gain from customized version without caching) is always above
the first curve, meaning that the gains through customization are larger than through
caching. As expected, this difference becomes smaller with increasing number of users
and thus cache hits. The topmost curve shows the gains from both caching and cus-
tomization. While the combined effect is always higher than each single effect, it is
unfortunately not additive. While with increased number of users the gains through
caching increase, each hit “cancels out” the gains through customization which will
not be invoked in such a case. Larger cache sizes still cause performance gains as is
demonstrated by the slightly increasing distance between the middle and upper curve.
This differential however grows far less than the slope of the lowermost curve which
represents the gains through caching for the non-customized Myx version.

6 Discussion

Performance Improvement. The evaluation results show that both our customization
and caching improve the performance. The customized versions use a light-weight
PLA representation, which consumes less memory and enables faster PLA selection
and instantiation than the XML-based Myx versions. The multi-level caching mech-
anism saves time and resources that would otherwise be spent on creating new run-
time instances. Under the current completely random assignment of privacy guards and
bindings, the probability of a privacy binding cache hit is 1/ 27 ctalConstraints ahoyt
7.9e-31), while the probability of a PCS cache hit is 1/ 27°tUMCs (apout 9.8e-4).
Therefore, the vast majority of instance reuses came from the PCS cache hits.

Practical Implications. The average arrival rate of new visitors in the current experi-
ment setup is 0.5. In contrast, Yahoo.com which Alexa currently ranks No. 1 worldwide
in terms of traffic seems to have a daily reach of close to 30 million unique visitors [22].



This roughly translates into an average arrival rate of 350 users per second. Because of
its modular approach, our framework would be able to handle this workload in a cloud-
computing paradigm [23]. If we continue using our average arrival rate of 0.5 visitors
for each node, then we can handle Yahoo-sized traffic with a cloud that consists of
700 nodes on average. Therefore we believe that with sufficient support from a cloud
computing environment, our approach can scale well to serve internationally operat-
ing websites, which would profit most from our privacy-enhancing framework. As a
reminder though, this number does not include the nodes that would be required to run
the Directory Component, the User Modeling Component, and the Web server.

Limitations of the Evaluation. Privacy bindings are randomly assigned to sessions in
our simulation, and hence their variations are evenly distributed across users. In real-
ity though, users’ individual privacy preferences are likely to gravitate towards typical
preferences, countries may have typical combinations of privacy bindings, and visitors
from certain countries may be more frequent than from others. The hit rate in the pri-
vacy binding cache is likely to be higher in this more realistic scenario with uneven
distribution, and the number of generated different instances lower than in our simula-
tion, both of which reduces the memory load. Another limitation is that the experiments
were conducted on a single PC platform. When the user modeling server is distributed
in a cloud computing environment, the Scheduler and the cache database are likely to
be overloaded, and therefore will need to be distributed as well.

7 Conclusions

Reconciling privacy and personalization in internationally operating websites is a chal-
lenging problem that no other existing work seems to address. Our PLA-based approach
is aimed at filling this gap, but its resource-intensive PLA selection and instantiation
process put the overall system performance into question. In this paper we discussed
four implementations of our approach and evaluated their performance in a simula-
tion experiment. Our study shows that our light-weight customized implementation
performs better than the original PLA implementation (the Myx version), that our multi-
level caching mechanism improves both versions, and that the customized version with
caching performs best. The average handling time per user session is less than 0.2 sec-
onds for all versions except the Myx version. Overall, our results demonstrate that with
a reasonable number of networked hosts in a cloud computing environment, an inter-
nationally operating website can use our dynamic PLA-based user modeling approach
to personalize their user services and at the same time respect the individual privacy
desires of their users as well as the applicable privacy norms.
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